

PV Module Material

TOYOBO CO.,LTD.

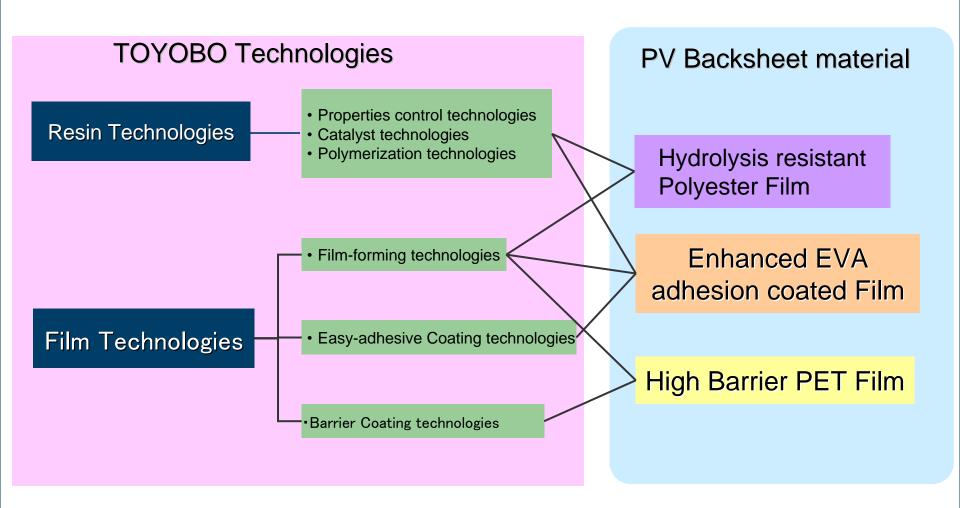
Industrial Films Operating Department

Contents

- 1. Overview of Toyobo
- 2. Toyobo's technologies and the development for PV components
- 3. Proposal of Toyobo products for PV Backsheet components
- 4. Toyobo's polymer 「TOYOBO GS Catalyst®」
- 5. Pet film for PV Backsheet 「SHINEBEAM®」
- 6. Enhanced EVA adhesion coated Film
- 7. SHINEBEAM Milky White type -
- 8. SHINEBEAM Transparent type -
- 9. SHINEBEAM Cavity White type -
- 10. Enhanced EVA adhesion coated Film (Black type)

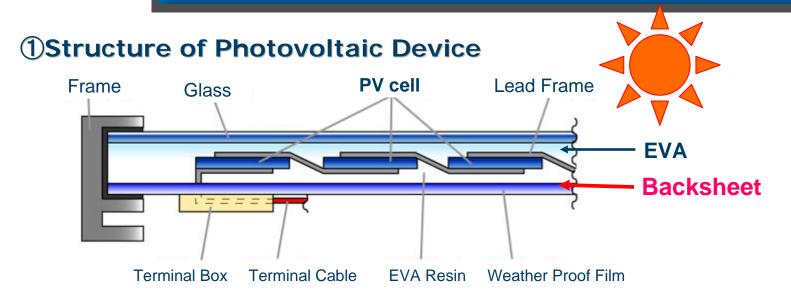
1. Toyobo Profile

Company name: TOYOBO Co. Founded: 1882

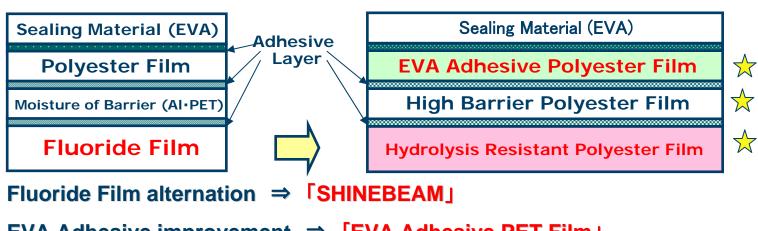

Employee :3,124(Consolidate 11,181)

Business

Film/Functional resin	Packaging, Industrial, Industrial lamination, Engineering plastics, fine chemicals
Industrial Material	Automobile fabric, super-fabric, functional filter etc
Life science	Bio , Pharmaceutical , Medical filter , Medical device , aqua-filer
Fabric	Functional material, fabric, textile
Others	Engineering etc



2. TOYOBO Technologies and PV material



3. Proposal for PV Backsheet composition

2 Alternative Proposal : Backsheet structure

EVA Adhesive improvement ⇒ 「EVA Adhesive PET Film」

Moisture of Barrier ⇒ 「Ecosyal」

4. Toyobo's polymer

1 Catalyst Review

Currently, Antimony catalysts represented by Sb2O3 are used for over 95% of polymerization of polyester in the world.

With the rising demands for environmental protection, it will become the subject of regulation.

Need the solution to dispose heavy metals

Thanks to the accumulated technologies of polyester polymerization for over 65 years, Toyobo developed the heavy metal free aluminum catalyst, which is the world's first breakthrough technology in history.

TOYOBO GS Catalyst® Jwas developed.

4. Toyobo's polymer

② Characteristic

Type of Resin	Hydrolysis	Thermal oxidation degradability
Resin using TOYOBO GS Catalyst®	0.021	0.01
Resin using antimony Catalyst	0.064	0.18
Testing Condition	130°C×6hr	230°C × 15 min airborne

(%BB)

GS resin has high hydrolysis resistance and low thermal oxidation degradability.

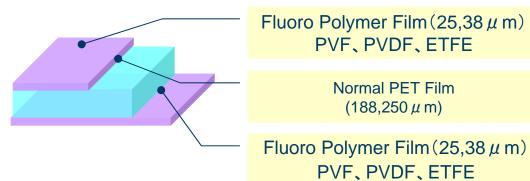
%BB: "Percent broken bonds of ester bonds" value: the lower, the better

Calculated from the equation, % BB (%) = $0.245(IVf_f^{-1.47} - IVf_1^{-1.47})$ [Journal of Applied Polymer Science, <u>42</u>, 1041 (1991)]

5. TOYOBO Backsheet material

1 TOYOBO Hydrolysis Resistant Polyester Film (SHINEBEAM)

SHINEBEAM is PET Film developed for PV that has the following characteristics, which is recommended to be used as Protective Films for the Backsheet of PV Module.


TOYOBO SHINEBEAM

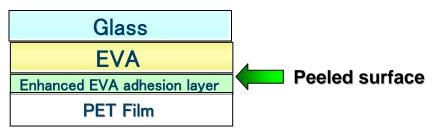
- Hydrolysis resistance is improved dramatically
- Heat life is improved
- No heavy-metal Sb (antimony) content as polymerization
- Transparent and White type

6. Enhanced EVA adhesion coated Film

Conventional Structure (TPT)

Proposal Structure

	тоуо	BO SHINEBE		
Proposal Structure	Туре	Thickness	Color	Characteristic
EVA Adhesion coating (below 1 μ m)	Q1A15	$50 \mu \text{m}$ And others	Transpa rent	High Adhesiveness to EVA High Hydrolysis Resistance RTI:120~125°C (in process) Flame Class:VTM-2(in process)
	Q3215	50μ m And others	White	High Hydrolysis Resistance UV Resistance RTI:120~125°C Flame Class:VTM-2
	Q1215	50 μ m And others	Transpar ent	High Hydrolysis Resistance RTI:120∼125°C Flame Class:VTM−2

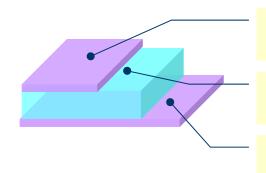

6. Enhanced EVA adhesion coated Film

(3)Coating Effect

Creating a sample configuration below.

Measuring the force necessary to peel the layers after endurance test.

	Peel Strength (N/cm) 180° peeling						
	85°C 85%RH						
Surface treatment	Initial	1000hr	2000hr				
non-coat	10	8	*				
Corona treated	60	9	*				
Adhesion coated	60 over	20 over	10 over				


* It was impossible to measure.

The test results indicate great effective adhesion durability.

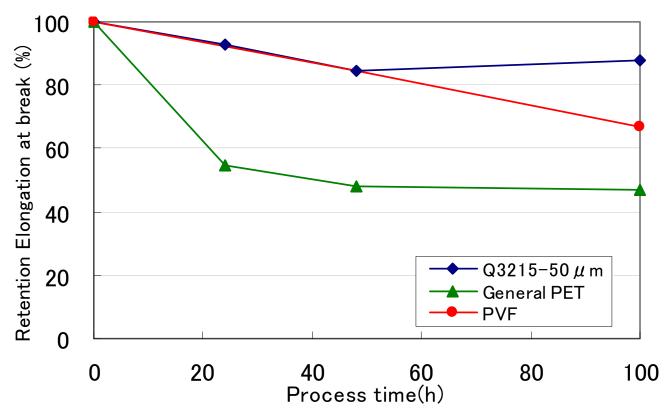
7. SHINEBEAM - Milky White -

Conventional Structure (TPT)

Fluoro Polymer Film (25,38 μ m) PVF, PVDF, ETFE

Normal PET Film $(188,250 \,\mu\,\text{m})$

Fluoro Polymer Film (25,38 μ m) PVF, PVDF, ETFE

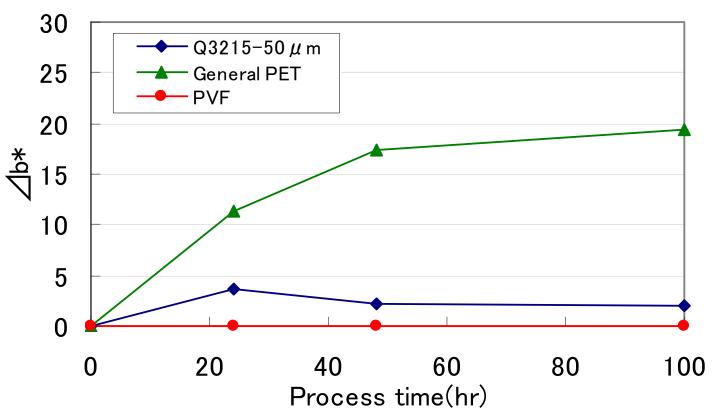

Proposal Structure

	ТОҮО	BO SHINEBE		
Proposal Structure	Туре	Thickness	Color	Characteristic
EVA side	Q1A15	50 μ m And others	Transpa rent	High Adhesiveness to EVA High Hydrolysis Resistance RTI: 120~125°C (in process) Flame Class: VTM-2 (in process)
	Q3215	50μ m And others	White	High Hydrolysis Resistance UV Resistance RTI:120~125°C Flame Class:VTM-2
	Q1215	50 μ m And others	Transpar ent	High Hydrolysis Resistance RTI:120∼125°C Flame Class:VTM-2

7. SHINEBEAM - Milky White -

TE Retention Rate after UV Test

Test condition

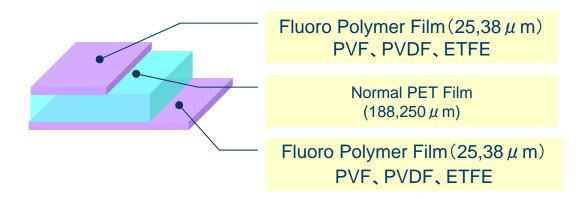

Irradiation intensity: 1000W/m² Temperature: 65°C/50%RH

Exposed time: 100hr.

7. SHINEBEAM - Milky White -

Color Change after UV Test (∠b*)

Test condition


Irradiation intensity: 1000W/m²
Temperature: 65°C/50%RH

Exposed time: 100hr.

8. SHINEBEAM - Transparent -

Conventional Structure (TPT)

Proposal Structure


	TOYOBO SHINEBEAM Type Thickness Color			
Proposal Structure				Characteristic
	Q1215	125,188, 250 μ m	Transpare nt	High Hydrolysis Resistance RTI: 125°C Flame Class: VTM-2 Density: 1.4
	Q2215	125,188, 250 μ m	White	High Reflectivity High Insulation RTI: 105°C Density: 1.1

8. SHINEBEAM - Transparent -


Evaluation of backsheet after 85°C × 85%RH × 3000hr Damp Heat Test

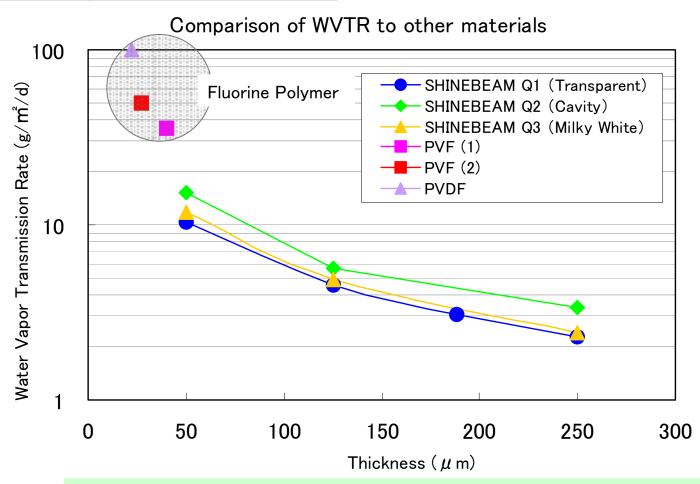
PVF / Normal PET/ PVF

Degradation of general PET laminated with PVF

SHINE BEAM (White) / SHINE BEAM (Transparent)

No peeling off recognizable

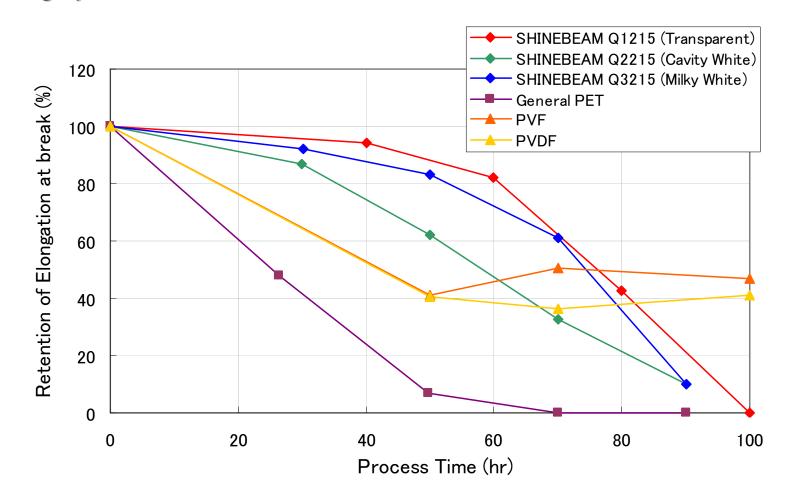
SHINEBEAM represents excellent durability


Cells **EVA** Glass

Modules are assembled and tested at AIST Highly Reliable PV Module Development and Evaluation Consortium.

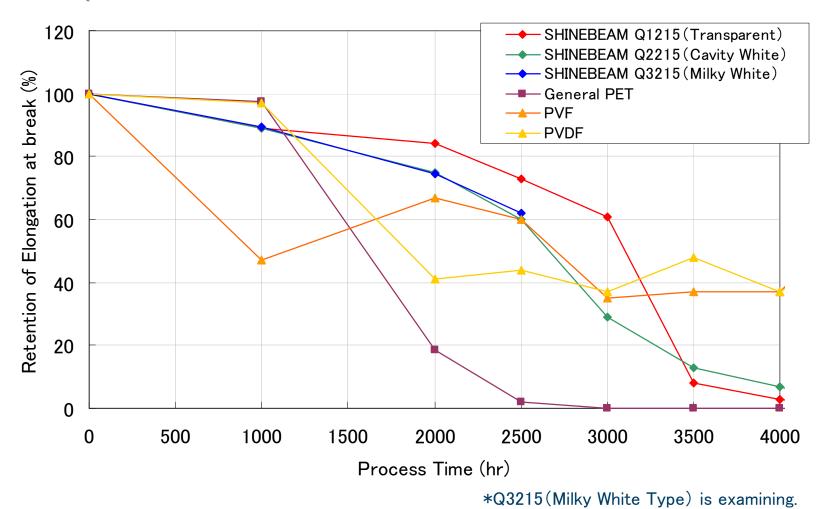
8. SHINEBEAM - Transparent -

Water Vapor Transmission Rate

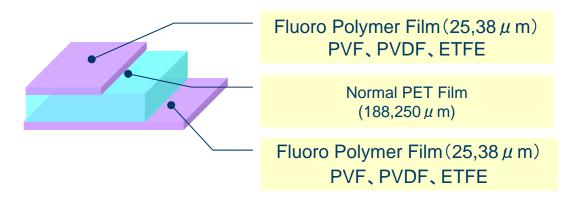


SHINEBEAM is excellent compared to the fluoropolymer film.

8. Hydrolysis Resistance of SHINEBEAM


Highly Accelerated Stress Test: 121°C 100%Rh

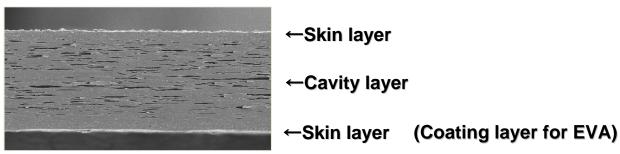
8. Hydrolysis Resistance of SHINEBEAM


Damp Heat Test: 85°C 85%Rh

9. SHINEBEAM - Cavity White type -

Conventional Structure (TPT)

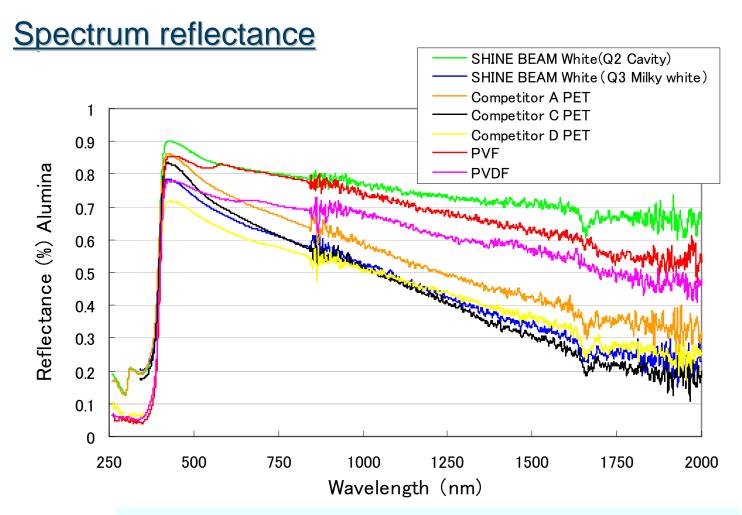
Proposal Structure


	SHINEBEAM			
Proposal Structure	Type	Thickness	Color	Characteristic
	Q1215	125,188, 250 μ m	Transparent	High hydrolysis resistance RTI(UL746B):125°C
		200 μ		Flame class(UL94): VTM-2
	Q2215	125,188, 250 μ m	White	High reflectivity High insulation RTI(UL746B):105°C(UL取得) Density:1.1

9. SHINEBEAM - Cavity White type -

(1) Characteristic of SHINEBEAM White

< Sectional drawing>

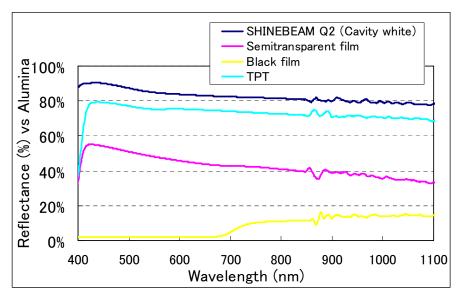


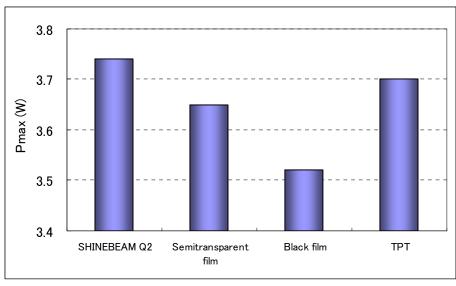
- Superior Hydrolysis resistance
- Long Heat Life
- Heavy Metal Free (Antimony Free)
- -High Reflectivity (Wavelength: 400~1200nm)
- Light Resistance
- High Insulation properties
- Better Die Cut performance

(Thanks to numerous voids contained in the film, SHINEBEAM White offers about 20% better than die cutability.)

20

9. Reflectance of SHINEBEAM

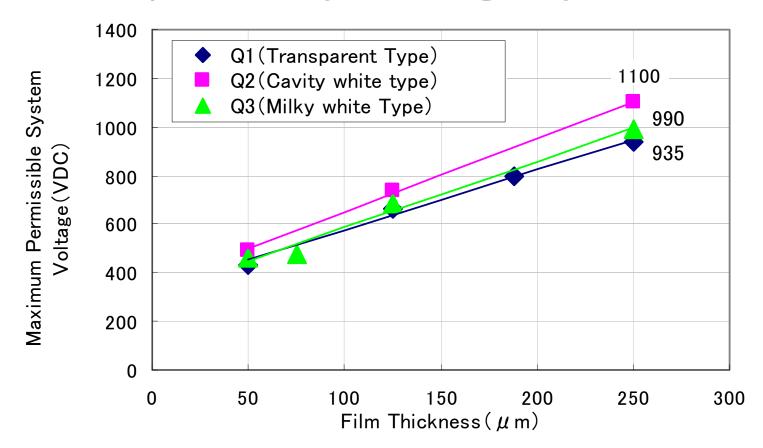



The reflectance in the infrared domain of SHINEBEAM cavity white is high in a white film

9. Power performance of SHINEBEAM cavity white type

Evaluation of power performance of polycrystalline silicone single cell module with backsheets varying in reflectance

Reflectance : Black < Semitransparent < TPT < SHINEBEAM cavity white


Output electricity is higher than module with TPT

SHINEBEAM cavity white type: Higher reflectance ⇒ Higher output electricity

9. Insulation of SHINEBEAM -Partial Discharge-

Partial discharge test Maximum permissible system voltage, Usys

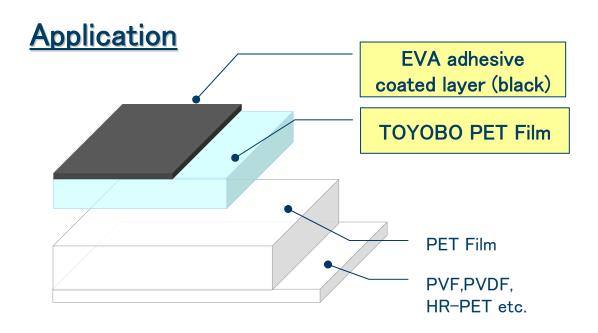
Tested: TUV Rheinland Japan Ltd. Global Technology Assessment Center

Test spec.: IEC 60664-1:207 Clause 6.1.3.5

9. Lineup and characteristic of SHINEBEAM

Lineup and characteristic comparison

SHINEBEAM Type	Color	Thickness (μm)	Hydrolysis Resistance	Anti UV	Reflect- ance	Insula- tion	Flame class UL94	RTI UL746B
Q1***	Transparent	50,125, 188,250	©	Δ	1	0	VTM-2	50-79 μ m : 120℃ 80-275 μ m : 125℃
Q2***	White (Cavity)	50,125,250	Δ	0	0	0	_	105℃
Q3***	Milky white (non-cavity)	50,75, 125,250	0	0	Δ	0	VTM-2	Same as Q1


⊚:Excellent O:good △:Standard ×:Poor

10. Enhanced EVA adhesion coated Film (Black type)

Characteristic

- Adhesive property with EVA is GOOD.
- ◆ It is possible to produce backsheets with unification color design.
- ◆ It improves the generation efficiency for amorphous silicone photovoltaic by a heat storage effect.

10. Enhanced EVA adhesion coated Film (Black type)

Enhanced EVA adhesion coated black film "TR809" [Property]

Ite	m	TR809	Test Method	
Thickness	μm		50	JIS C-2318
Total Light Transmittance	%		0.6	JIS K-7105
Tensile Strength	MPa	MD	179	JIS C-2318
	MPa	TD	252	JIS C-2318
Tensile Elongation	%	MD	175	JIS C-2318
	%	TD	108	JIS C-2318
Heat Shrinkage	%	MD	0.2	JIS C-2318
(150°C30min.)	%	TD	0.0	JIS C-2318
Adhesion Property with EVA	N/cm	Standard/fast type EVA	80 over	TOYOBO Method*

^{*} Above data is typical, not guaranteed.

^{*} Adhesion property is not guaranteed for all EVA.

